Implication of endothelial dysfunction in the pathogenesis of cardiovascular diseases
Implication of endothelial dysfunction in the pathogenesis of cardiovascular diseases
This is an automatically generated default intro template – please do not edit.
General information |
|
Title: | Implication of endothelial dysfunction in the pathogenesis of cardiovascular diseases |
Meta keywords: | |
Meta description: | |
Images information |
|
Images path absolute: | |
Images path relative: | |
Thumbs path absolute: | |
Thumbs path relative: | |
Fields information |
|
Article_Title: | Implication of endothelial dysfunction in the pathogenesis of cardiovascular diseases |
Authors: | Laura Petrica |
Affiliation: | Cardiology Clinic ASCAR, City Hospital Timișoara, Romania |
Abstract: | Atherosclerosis represents the pathological background for a variety of cardiovascular diseases. The vascular endothelium regulates the arterial reactivity by secreting relaxing and contracting factors: nitric oxide, prostacyclin, endothelin-1 and angiotensin converting enzyme. Endothelial dysfunction is encountered in the early phases of atherogenesis. Its existence can be demonstrated in patients with risk factors for atherosclerosis (hypercholesterolemia, arterial hypertension). The endothelial function can be assessed by several noninvasive methods, the most popular being the ultrasonography of brachial artery. |
Keywords: | endothelial dysfunction, atherogenesis, nitric oxide, angiotensin, prostacyclin |
References: | Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: marker of artherosclerotic risk. Arterioscler Thromb Vasc Biol 2003; 23: 168-175. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine. Nature 1980; 288: 373-376. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340: 115-126. Palmer RM, Farrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-526. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-666. Furchgott FR, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989; 3: 2007-2018. Moncada S, Vade VR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1989; 30: 293-331. Richard V, Tanner FC, Tschudi M, et al. Different activation of L-arginine pathway by bradykinin, serotonin and clonidin in coronary arteries. Am J Physiol 1990; 259: H1433-H1439. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411-415. Ikegawa R, Matsumura Y, Tsukahara Y, et al. Phosphor amidone, a methalloproteinase inhibitor, suppresses the secretion of endothelin-1from cultured endothelial cells by inhibiting a big endothelin-1 converting enzyme. FEBS Lett. 1991; 293: 45-48. Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1989; 86: 2863-2867. Heines WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994; 344: 852-854. Luscher TF, Vanhoutte PM. The endothelium: modulator of cardiovascular function. CRC Press 1990, Boca Raton. McLenachan JN, Williams JK, Fish RD, et al. Loss of flow-mediated endothelium-dependent dilation occurs early in the development of artherosclerosis. Circulation 1991; 84: 1273-1278. Yanagisawa M. The endothelial system. A new target for therapeutic intervention. Circulation 1994; 89: 1320-1322. Rizvi MA, Myers PR. Nitric oxide modulates basal, endothelin-induced coronary artery vascular smooth muscle cell proliferation, collagen levels. J Mol Cell Cardiol 1997; 29: 1779-1789. Rossitch E Jr, Alexander E 3rd, Black PM, et al. L-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest 1991; 87: 1295-1299. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546-2551. Cooke JP, Dzau VJ. Derangement of the nitric oxide synthase pathway, L-arginine, cardiovascular diseases. Circulation 1997; 96: 379-382. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in human coronary and peripheral circulation. J Am Coll Cardiol 1995; 26: 1235-1241. Forte P, Copland M, Smith LM, et al. Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349: 837-842. Kantusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33-H37. Laursen JB, Rajagopalan S, Galis Z, et al. Role of superoxide in angiotensin II induced but not cathecolamine-induced hypertension. Circulation 1997; 95: 588-593. Moreau P, d’Uscio LV, Shaw S, et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor antagonist. Circulation 1997; 96: 1593-1597. Takase H, Moreau P, Kung CF, et al. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Effect of verapamil and trandolapril. Hypertension 1996; 27: 25-31. Ghiadoni L, Taddei S, Viradis A, et al. Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension 1998; 32: 25-32. Perticone F, Ceravolo R, Maio R, et al. Realationship between left ventricular mass and endothelium-dependent vasodilatation in never-treated hypertensive. Circulation 1999; 99: 1991-1996. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 2001; 37: 1344-1350. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-2012. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(A), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001; 285: 2481-2485. Murakami T, Mizumo S, Kaku B. Clinical morbidity in subjects with Doppler-evaluated endothelial dysfunction of coronary artery. J Am Coll Cardiol 1998; 31(Suppl A): 419A. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy in the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332: 481-487. Gao YS, Nagao T, Bond RA, et al. Nebivolol induces endothelium-dependent relaxation of canine coronary arteries. J Cardiovasc Pharmacol 1991; 17: 964-969. |
Read_full_article: | pdf/vol12/iss3/JMA12-3-09Petrica1.pdf |
Correspondence: | Laura Petrică, Cardiology Clinic ASCAR, City Hospital Timișoara, Romania E-mail: petricalaura@yahoo.com |
Read full article | |
Article Title: | Implication of endothelial dysfunction in the pathogenesis of cardiovascular diseases |
Authors: | Laura Petrica |
Affiliation: | Cardiology Clinic ASCAR, City Hospital Timișoara, Romania |
Abstract: | Atherosclerosis represents the pathological background for a variety of cardiovascular diseases. The vascular endothelium regulates the arterial reactivity by secreting relaxing and contracting factors: nitric oxide, prostacyclin, endothelin-1 and angiotensin converting enzyme. Endothelial dysfunction is encountered in the early phases of atherogenesis. Its existence can be demonstrated in patients with risk factors for atherosclerosis (hypercholesterolemia, arterial hypertension). The endothelial function can be assessed by several noninvasive methods, the most popular being the ultrasonography of brachial artery. |
Keywords: | endothelial dysfunction, atherogenesis, nitric oxide, angiotensin, prostacyclin |
References: | Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: marker of artherosclerotic risk. Arterioscler Thromb Vasc Biol 2003; 23: 168-175. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle to acetylcholine. Nature 1980; 288: 373-376. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340: 115-126. Palmer RM, Farrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-526. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-666. Furchgott FR, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989; 3: 2007-2018. Moncada S, Vade VR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1989; 30: 293-331. Richard V, Tanner FC, Tschudi M, et al. Different activation of L-arginine pathway by bradykinin, serotonin and clonidin in coronary arteries. Am J Physiol 1990; 259: H1433-H1439. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411-415. Ikegawa R, Matsumura Y, Tsukahara Y, et al. Phosphor amidone, a methalloproteinase inhibitor, suppresses the secretion of endothelin-1from cultured endothelial cells by inhibiting a big endothelin-1 converting enzyme. FEBS Lett. 1991; 293: 45-48. Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1989; 86: 2863-2867. Heines WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994; 344: 852-854. Luscher TF, Vanhoutte PM. The endothelium: modulator of cardiovascular function. CRC Press 1990, Boca Raton. McLenachan JN, Williams JK, Fish RD, et al. Loss of flow-mediated endothelium-dependent dilation occurs early in the development of artherosclerosis. Circulation 1991; 84: 1273-1278. Yanagisawa M. The endothelial system. A new target for therapeutic intervention. Circulation 1994; 89: 1320-1322. Rizvi MA, Myers PR. Nitric oxide modulates basal, endothelin-induced coronary artery vascular smooth muscle cell proliferation, collagen levels. J Mol Cell Cardiol 1997; 29: 1779-1789. Rossitch E Jr, Alexander E 3rd, Black PM, et al. L-arginine normalizes endothelial function in cerebral vessels from hypercholesterolemic rabbits. J Clin Invest 1991; 87: 1295-1299. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546-2551. Cooke JP, Dzau VJ. Derangement of the nitric oxide synthase pathway, L-arginine, cardiovascular diseases. Circulation 1997; 96: 379-382. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in human coronary and peripheral circulation. J Am Coll Cardiol 1995; 26: 1235-1241. Forte P, Copland M, Smith LM, et al. Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349: 837-842. Kantusic ZS, Vanhoutte PM. Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33-H37. Laursen JB, Rajagopalan S, Galis Z, et al. Role of superoxide in angiotensin II induced but not cathecolamine-induced hypertension. Circulation 1997; 95: 588-593. Moreau P, d’Uscio LV, Shaw S, et al. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor antagonist. Circulation 1997; 96: 1593-1597. Takase H, Moreau P, Kung CF, et al. Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Effect of verapamil and trandolapril. Hypertension 1996; 27: 25-31. Ghiadoni L, Taddei S, Viradis A, et al. Endothelial function and common carotid artery wall thickening in patients with essential hypertension. Hypertension 1998; 32: 25-32. Perticone F, Ceravolo R, Maio R, et al. Realationship between left ventricular mass and endothelium-dependent vasodilatation in never-treated hypertensive. Circulation 1999; 99: 1991-1996. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 2001; 37: 1344-1350. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002-2012. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(A), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001; 285: 2481-2485. Murakami T, Mizumo S, Kaku B. Clinical morbidity in subjects with Doppler-evaluated endothelial dysfunction of coronary artery. J Am Coll Cardiol 1998; 31(Suppl A): 419A. Treasure CB, Klein JL, Weintraub WS, et al. Beneficial effects of cholesterol-lowering therapy in the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995; 332: 481-487. Gao YS, Nagao T, Bond RA, et al. Nebivolol induces endothelium-dependent relaxation of canine coronary arteries. J Cardiovasc Pharmacol 1991; 17: 964-969. |
*Correspondence: | Laura Petrică, Cardiology Clinic ASCAR, City Hospital Timișoara, Romania E-mail: petricalaura@yahoo.com |